
princeton univ. F’22 cos 521: Advanced Algorithm Design

Lecture 1: Karger’s Min Cut Algorithm

Lecturer: Huacheng Yu Scribe:

Today’s topic is simple but gorgeous: Karger’s min cut algorithm and its extension. It is
a simple randomized algorithm for finding the global minimum cut in an undirected graph:
a (non-empty) subset of vertices S in which the set of edges leaving S, denoted E(S, S) has
minimum size among all subsets. You may have seen an algorithm for this problem in your
undergrad class that uses maximum flow. Karger’s algorithm is elementary and and a great
introduction to randomized algorithms. For simplicity, we will consider unweighted graphs
(the algorithm also works for weighted graphs). A more general problem is called min-k-cut,
which asks to find the partition of the vertices into k disjoint sets that has the minimum
total number of edges across the parts. Global minimum cut is simply the special case with
k = 2. The algorithm we talk today also generalizes to min-k-cut naturally, although we
will focus on the minimum cut problem.

0.1 Basic Operations

Karger’s algorithm makes use of the following basic operations.

1. Select a random edge: For this lecture (and most lectures), we won’t stress about
how the algorithm accomplishes this. For instance, the algorithm might have the
ability to select a random number between 1 and m = |E|, and can select the edge
indexed by the random number. In any case, we will assume the algorithm can select
a random edge in time O(1).

2. Contract an edge: This operation takes two existing nodes in the graph with an
edge between them and “merges” them into a super-node. That is, the operation
Contract(G = (V,E), e = {u, v}) takes as input a graph G with vertex set V and
edges E, and outputs a new graph G′ with vertex set V \ {u, v} ∪ Su,v. That is, it
replaces the two nodes u and v with a supernode Su,v. The new edge set contains all
edges between two nodes in V \ {u, v}. For all edges between u and x /∈ {u, v}, add
an edge between Su,v and x. Ditto for all edges between v and x /∈ {u, v}. Note that
this may create multiple edges between two nodes and this is intended. But
do not include edges from Su,v to itself. This lecture, we will also not stress about
how exactly to implement this operation, but note that it can be done in time O(n).

0.2 The (Core) Algorithm

The algorithm is extremely simple: Pick a random edge, and contract it. Repeat until the
graph has only two supernodes, which is output as our guess for min-cut. That is, if upon
termination the two remaining nodes are SX and SX̄ , output (X, X̄) as the guess for the
minimum cut.

1

2

To guarantee a high success probability, re-run the algorithm from scratch k times
independently, and output whichever guess (X1, X̄1), . . . , (Xk, X̄k) is the smallest cut. k
will be chosen shortly.

0.2.1 Intuition

Before we get into a formal proof (which itself is quite simple), here is some brief intuition.
We say that a given cut (X, X̄) survives contraction e = {u, v} if |X ∩ {u, v}| ≠ 1. That is,
a cut survies the contraction of edge e as long as edge e is between two nodes on the same
side of the cut. The idea is that once an edge that crosses the cut (X, X̄) is contracted, we
have guaranteed that we cannot possibly output cut (X, X̄) at the end. On the other hand,
if we never contract an edge that crosses cut (X, X̄), then (X, X̄) will be exactly the cut
we output.

So the idea is that we output a cut if and only if it survives all n − 2 contractions.
At every step, the cut that is most likely to survive is exactly the global min-cut, exactly
because it has fewer edges that “kill” it than all other cuts.

This algorithm also looks like a great heuristic to try on all kinds of real-life graphs, where
one wants to cluster the nodes into “tightly-knit”portions. For example, social networks
may cluster into communities; graphs capturing similarity of pixels may cluster to give
different portions of the image (sky, grass, road etc.). Thus instead of continuing Karger’s
algorithm until you have two supernodes left, you could stop it when there are k supernodes
and try to understand whether these correspond to a reasonable clustering.

0.3 Analysis

We begin with the following observation, which is really more of a definition than observa-
tion:

Observation 1
Let G′ be obtained by a sequence of edge contractions of G. Then there is a one to one cor-
respondence between cuts (Y, Ȳ) of G′ and cuts (X, X̄) of G that survived all contractions.
Namely, the cut (Y, Ȳ) in G′ corresponds to the cut X = ∪y∈Y S(y), where S(y) denotes
the original verticies of G that were contracted to form the super-node y in G′.

The key corollary in the analysis of Karger’s algorithm follows the following simple
lemma:

Lemma 1
Let G be an undirected graph, potentially with multi-edges but not self-loops, and let c be
the value of the min-cut of G. Then |E(G)| ≥ nc/2.

Proof: The cut ({v}, E\{v}) is a potential min-cut, and has value exactly d(v) (the degree
of v). Therefore, d(v) ≥ c for all v. We can write |E| =

∑
v d(v)/2 ≥ nc/2. 2

Corollary 2
Let G be an undirected graph, potentially with multi-edges but not self-loops. Let (X, X̄)
be any minimum cut of G. Then the probability that (X, X̄) survives the contraction of a
random edge is at least (1− 2/n).

3

Proof: By Lemma 1, there are at least cn/2 edges that might be selected. Exactly c of
them would kill (X, X̄). So the probability that (X, X̄) survives is at least 1− c

cn/2 = 1−2/n.
2

And now we can conclude with the main theorem:

Theorem 3
[Karger 1993] For any graph G, and any min-cut (X, X̄) of G, Karger’s algorithm outputs
(X, X̄) with probability at least 2

n(n−1) .

Proof: We know that Karger’s algorithm outputs (X, X̄) if and only if X survives every
contraction. The probability that X survives the first contraction is 1−2/n by Corollary 2,
and the probability that it survives the ith contraction, conditioned on surviving the first
i − 1 is 1 − 2/(n − i − 1) (also by Corollary 2). So the probability that it survives every
contraction is at least:

n−2∏
i=1

(1− 2/(n− (i− 1))) =
n−2∏
i=1

(n− i− 1)/(n− i+ 1) =
2

n(n− 1)
.

The last equality is due to a telescoping product. 2

Note that in order to guarantee that the min-cut survived at least one iteration except
with probability ϵ, we would need to repeat the procedure independently Θ(n2 ln(1/ϵ))
times. The runtime of each iteration is O(n2) because we do n − 2 contractions, each of
which takes time O(n), so the total runtime of the algorithm is O(n4), which is sad.

Still, notice that we have proved some cool facts: we showed that any particular min-
cut is output with probability 2

n(n−1) . As the sum of probabilities of disjoint events cannot
exceed one, we have therefore shown that the number of global mincuts in a graph cannot
exceed

(
n
2

)
. Note that there are initially 2n−1 possible cuts, so this is significantly smaller.

0.4 Improved Karger-Stein Algorithm

Karger and Stein improve the algorithm to run in time O(n2 log2(n)) (essentially replacing
two factors of n with log(n) instead). The idea is that roughly that repetition ensures fault
tolerance. The real-life advice of making two backups of your hard drive is related to this:
the probability that both fail is much smaller than one does. In case of Karger’s algorithm,
the overall probability of success is too low.

The main idea is this: we’re actually unlikely to kill the min-cut in the first several
contractions, so why are we repeating these every single time. Instead, we should be a little
more clever about exactly which contractions we repeat.

Observation 2
Let G be an undirected graph with n nodes, possibly with multi-edges but not self-loops.

Let (X, X̄) be any minimum cut of G, then the probability that (X, X̄) survives n− n/
√
2

random contractions is at least 1/2.

Proof: Exactly the same math as the proof of Theorem 3, except stop at n−n/
√
2 instead

of n− 2. This telescopes to at least 1/2. 2

4

Now, consider the following recursive algorithm: starting from a graph G (with n nodes,
multi-edges but no self-loops), randomly contract edges until only n/

√
2 nodes remain, and

call the resulting graphs G′. Then, call the algorithm twice independently on G′, and output
the smaller of the two returned cuts.

The runtime of the algorithm satisfies the recurrence:

T (n) = O(n2) + 2T (n/
√
2).

T (n) = O(n2 log n) solves the recurrence.1 So each independent run of Karger-Stein
has total runtime barely more than Karger’s algorithm itself, but the redundancy should
guarantee a higher success rate. We again need to analyze the probability that the min-cut
survives the Karger-Stein algorithm.

Theorem 4 (Karger-Stein 1996)
The probability that Karger-Stein outputs a min-cut is Ω(1/ log n).

Proof: Let (X, X̄) be a min-cut of G with n vertices, define P (n) to be the probability
that some leaf in the recursion of Karger-Stein produces (X, X̄). We see that Karger-Stein
produces (X, X̄) if and only if:

• A min-cut survives the first n − n/
√
2 contractions (this occurs with probability at

least 1/2, by Observation).

• At least one of the recursive calls succeeds. Each recursive call succeeds with proba-
bility at least P (n/

√
2), by definition.

So the probability of success for each try is at least (1 − (1 − P (n/
√
2))2)/2, and we

get P (n) ≥ (1− (1− P (n/
√
2))2)/2. The last step is again solving the recurrence, which is

Ω(1/ log n).
To see this, assume for inductive hypothesis that P (n/

√
2) ≥ c/ log(n/

√
2). Then we

get:

P (n) ≥ (1− (1− P (n/
√
2))2)/2

≥ (1− (1− c/ log(n/
√
2))2)/2

=
c

log(n/
√
2)

− c2

2 log2(n/
√
2))

=
c

log n− 1/2
− c2

2(log n− 1/2)2

=
c

log n
+

2c(log n− 1/2) log n− c2 log n− 2c(log n− 1/2)2

2(log n− 1/2)2 log n

=
c

log n
+

c log n− c2 log n− c/2

2(log n− 1/2)2 log n

≥ c

log n
.

1Note that this can be done using the Master Theorem, or instead by writing a binary tree, observing
that there are O(logn) levels, and that each level has total “excess” work of O(n2). On level i, there are 2i

nodes, each with “excess work” O((n/
√
2
i
)2) = O(n2/2i).

5

The last inequality is true as long as c < 1 and n sufficiently large. So we get that the
probability of success is Ω(1/ log(n)). 2

Now, we can repeat the entire algorithm independently O(log(n) log(1/ϵ)) times to get
a total success rate of 1− ϵ.

